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STRESS CONCENTRATION EFFECTS IN MICROPOIAR EIASTICITY

Abstract

In the present note, consideration is given to the problem
of stress concentration around a circular hole in the theory of
micropolar elasticity. The results obtained appear to contradict
the findings of Mindlin on the same problem based upon the
linear theory of couple stress elssticity.
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1. Introduction

Eringen and Suhubi [1,2] have formulated and developed a
continuum theory of micro-isotropic elastic solids, which takes

into account the micro-motions and micro-rotation of the media.
A limited case of this theory, called a determinate theory of
couple stress elasticity, has also been deduced in {2]}. Recently
| Eringen [3] has recapitulated this theory on a more sound footing,
! discussing the thermodynamics and uniqueness theorems, ané has
naned it the linear theory of micropolar elasticity. In this
theory, besides the macro deformation, the micro-rotation of the
| elements of the media, represented by a vector ® , is also taken
into account. However, this vector ¢ , vhich is found to be
responsible for developing a couple stress m L2 in the medis,
is kinemtically independent and is not related to the linear
displacement, u . Physically the solids which are camposed of
dumbbell macro molecules, such as fibrous and coarse grain struc-
ture materials, are thought to be described by this theory. The
constitutive equations for the stress tensor ’ck P and the couple
stress ™ (in Cartesian tensor notation) for this class of

materials are given as
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where eklr is the alternating tensor, A and i are the classical
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lamé constants while K , o , 8 and 7y are four additional
constants which arise because of the consideration of the micro-
structure of the media. Also the equations of balance of momentum
and the balance of first stress moments take the form

.o
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Here, fl is the body force per unit mass, tk is the first
body moment per unit mass, p 1is the mass density and ék is
the micro-rotation inertia of the elements. The quantity ék

is expressed in terms of ¢ by a relation of the form
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vhere J 1is another elastic constant depending upon the material
property.

Upon examining several uniqueness and energy theorems,
Eringen [3] has also given the following thermodynamicel restrictions
upon the various constants, provided the internal energy has to

be non-negative:

A+2u+x >0 , p >0, kK >0,

(6)
xx+2yr 20, vy 28 2 ~-~7 , 7 20

The solution of the problem to be considereG here has already
been analyzed by Mindlin [4], but his cderivations are based upon
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a linearized theory of couple-stress elasticity developed by
Mindlin and Tiersten [5)*., This theory, although introduces

the consideration of couple stresses in continuum mechanics, is,
however, different from the theory of micropolar elasticity in
the following two significant aspects. In the first place, the
linearized theory of couple stress elasticity leaves the anti-
symmetric part of the stress tensor and also the symmetric part
of the couple stress tensor indeterminate, whereas the theory

of micropolar elasticlity does not. In the former case, therefore,
it becomes difficult to have the clear and complete information
of the problems in which cross stresses play important roles.
Secondly, the linear theory of couple-stress elasticity defines
the rotation of the elements in terms of the displacement of

the elements, as in the classical sense, whereas the theory of
micropolar elasticity defines the micro-rotation kinematically
independently with the linear displacement. It, therefore, fol-
lows that in the former case the consideration of the rotation
depends solely upon the fact whether the element undergoes linear
displacement or not, whereas in the latter case the consideration
of the rotation of the elements 1s always possible whether or
not there is some linear displacement®™. Finally, the theory of
couple-stress elasticity does not account for the inertias forces

vhich are equally important in dynamical problems.

For an account of this theory applicable to engineering problems
and also for the physical reality of the results based upon this
theory, we refer to the paper by Schijve [6].

¥* It has also been shown in [3] that linear theory of couple-stress
elasticity [5] turns out a8 & limited case of the linear theory of
micropolar elasticity under constrained motioms.




General Technology Corporation

Besides sbove facts, the theory of migropolar elesticity
has some physical precedent for it. In his study of dislocation
and moment stresses from the continuum approach, Kroner [7]
obtains an equation similar to Equation (2) for the torque
stress tensor connected with the lattice curvature. In our
present notation, if mk} is taken to represent the torque

stress, then ¢ clearly represents the lattice curvature.

|
Alsc in agreemen;Jwith Krsner, couple stresses in the micropolar
theory are, in fact, a consequence of the presence of dislocations,
i.e., lattice curvature, and therefore vanish whenever ¢ vanishes.
With these considerations, we now proceed to discuss the
problen of stress concentration around a circular hole in an
infinite plate subject to axial tension. Our analysis reveals
that the effect of couple stresses is significantly small as
compared to the classical case; thus agreeing with the experi-
mental findings of Schijve {6], but contradicting the conclusions
of Mindlin [4] who claimed that couple stresses have considerable
influence. This striking difference with Mindlin's result, in
fact, arises because of a new ratio (%) , defined below, that
occurs in the present analysis but 1s not found in the case of
linear couple stress theory. However, since some of the steps
in our mathematical analysis are the same as those of Mindlin's
work, we omit the corresponding details here and refer the
reader to this paper for collateral study; the notations of

which would be used here as far as possible.




General Technology Corporation

2. -Stress Concentration Around A Circular BHole

The problem of stiress concentration around a cir:ular hole

problem of two dimensional plane deformations in cylindri-

¥ §

ler coordinstes., Hence on assuming the digplscement and

micro-rotation components of the form
u=ur,9) , va=v(,s) , °Z = °z(r:9) (1)

the equations of compatibility are given as in [&],
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On introducing the stress functions o(r,8) and y(r,0)
consistent to Equations (3) and (&) (cf. Mindlin)
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we find that compatibility equations, after some calculations,

become
o (v - 2 A ) = -2(1-v') w2 L é—‘ve@
ar v r 36
(11)
19 2 2 ‘.20 2
ra—é-(v-c T7¥) = +2(1-v ) b arvcp
where
cg L2 + k) b2 _ Y
(214k) & ’ T 2(2pk)
(12)
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From Equations (11) we can easily arrive at the equations
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N
7 9 = 0
12
T¥-c 7 ¥) =0
which are now un-oupled between @ and v . Except with the

replacement of c2 for 22 , where now c2 is expressed in
terms of the elastic constants having the dimensions of length
square, Equations (13) are identical with those obtained by
Mindlin. The compatibility Equations (11) are, however, some-
what different from those of Mindlin.

Mindlin takes suitable forms for ¢ and ¥ and then, by
applying appropriate boundary conditions, determines the expres-
sions for stress and couple stress components. The particular
result of interest, he calculates, is the expression for teg (zax),
which occurs at r=a and 6 =% g , and turns out to be

(cf. Mindlin's Equation (40))

t  (max) = p (1)

o6 1+F

vhere p 1is the magnitude of the uniform tension applied in

the x-direction and F is given by (cf. Mindlin's Eq. (39))

2 K (a/t)
) 8 2a © -1
F = 8(1 - v) [4+ ;E Iy E;?Z7?T] (1)

vhere a is the radius of the circular hole. It is thus clear
from (14) that the influence of couple stresses is usinly affected
due to the magnitude of F , given by (15), which in turn depends
uwpon v, a and £ . Of these three the first two could be
known easily while the third factor £ arises due to the presence

of couple stresses,
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Mindlin, in giving the physical background of £ states,
"In perfect crystals and amorphous materials like glass ... dimen-
sions of holes, fillets, notches or cracke in them may approach
¢ for e veriety of materials."” That this reasoning is not sound
could be argued from the fact that in notched specimen consider-
ations, the apparent rise of the yield stress ie, in fact, because
of the difficulty of indicating the beginmning 0f the plastic
deformation and that in such cases yielding is a localized pheno-
menon.

In our present calculations it is found that F' , the cor-

responding value of F to that of Mindlin's case, is given as

. 8(1 - v') b2/c2
Ko(a/c)

Kl(a/c)

(16)
2a

]

{h + 5§‘+
C

A careful comparison of (15) and (16) indicates that F' can go

over to F only if

|

=1 , ¢ =48 , v = v (17)

(o]

Whether or not the second and third conditions of (17) hold, the

first condition itself, with the help of Equation (12), reduces

K
u+ K

1
5‘( Y= 1 i.e., K = -2u (18)
which not only contradicts the thermodynamical restrictions given
by (6) but also is physically unreslistic in the sense that the
magnitude of the constant Kk cannot be as great as to be equal to
the twice of the shear modulus. In view of this fact it can,
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therefore, be concluded that expression for F , given by (15),
is not acceptable.

On using F' , in place of F , in Equation (14), calculations
have been made again for different reasonable values of « and 7y .
The physical ground for the particular values of K used here is
based on the fact that in polycrystalline materials the magnitude
of shear-modulus ((2u + <) in our calculations) is increased bty
neerly five percent of its usual value, a8 has been observed ex-
perimentally in meny ceses, for example, by Bradfield and Pursey [9].
The values of 7 8re, however, taken from a corresponding cal.u-
lation of Kroner in which the ratio of the torque stress to the
lattice curvature has been obtained. In the present case it is
found that stress concentration factor not only depends upon (%)
(%”that of Mindlin's case) and the Poisson's ratio but also is
controlled by a new ratio (%) . With the above choice, for values
of x and 7y , the values of (%) and ¢ are found to be
significantly emall. It then follows that the value of % would
be considerably high since the radius of the hole cannot be below
the order of 1 mm. Figures 2 to 5 show the plot of stress concen-
tration factor against (%) for two different values of % . A
clear comparison between Eringen's theory and Mindlin's theory
has been displayed in the graphs. It can be easily seen that, in
the present case, the stress concentration factor ranges from 2.97

b
to 2.985 (even for an exireme case when % = 3, = = 0.20), very

C
near to the classical value, whereas Mindlin's theory predicts a
range from 2.4 to 2.6.
As a final remark it may also be worthwhile to point out here

that the conclusions drawn by Cohen [10] and Muki and Sternberg [11],
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on the basis of the linear theory of couple stress elasticity,
would be considerably affected in a likewise manner as in the
case of the present anaiysis. We do not, however, wish to pursue

this analysis in the present note.
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Fig. 1 Circular bole in an infinite plate

subject to axial tension.
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